AlphaGo用它下棋百度却用它解决更难的数学问题!
晓查 发自 凹非寺
量子位 报道 | 公众号 QbitAI
9102年,人类依然不断回想起围棋技艺被AlphaGo所碾压的恐怖。
却也有不以为然的声音:只会下棋的AI,再厉害也还是个运动员啊!
百度说:你们错了,它还是一位数学家。
百度硅谷AI实验室的同学们,就在用这个出自谷歌DeepMind的围棋算法,解决一个比围棋复杂得多的数学问题。
为了重新训练这个算法,百度用了300张1080Ti和2080Ti显卡。
他们解决的问题,叫做“图着色问题”,又叫着色问题,属于前些天让中国奥数队全军覆没的图论。它是最著名的NP-完全问题之一。
简单来说,就是用尽可能少的颜色,给一张图的顶点上色,保证相邻顶点的颜色不重复。
10个顶点的简单版是这样的:
而复杂版……只要顶点足够多,分分钟让人类数学家无从下手,如果有512个顶点,这个问题的复杂度会比围棋高出几百个数量级。
在这个数学问题上,运动员AlphaGo表现优秀,最高能将一张图所用的颜色减少10%。
从四色定理谈起
就算你对“图论”、“着色问题”这些词有点陌生,应该也听说过“四色定理”。这是第一个由计算辅助证明的数学定理。
四色定理告诉我们,只需4种颜色我们就可以让地图上所有相邻国家的颜色互不相同。
这其实就是一个平面上的着色问题,国家可以简化为顶点,国与国之间的相邻关系可以简化为连接顶点之间的线。对于平面图而言,颜色数k最小等于几?
历史上数学家已经手工证明了五色定理(k=5),但是因为运算量太大,在将颜色数量进一步减少到四种(k=4)时却迟迟无法解决,最终在70年代靠计算机才完成证明。
一般来说,我们可以用贪心算法解决这个问题,其基本思路是:先尝试用一种颜色给尽可能多的点上色,当上一步完成后,再用第二种尽可能多地给其他点上色,然后再加入第三种、第四种等等,直到把整张图填满。
或者是用深度优先搜索算法,先一步步给图像着色,若遇到相邻点颜色相同就回溯,再换一种着色方法,直到问题解决为止。
比围棋世界更复杂
如果图的顶点数比较少,以上两种方法还可行,但随着顶点数的增加,以上两种算法的局限性就暴露了出来。
△用贪心算法着色和最优解的对比
贪心算法会陷入局部最优解,而深度优先搜索算法的运算量会越来越大,以至于完全不可行。
图着色问题的复杂度随着顶点数增加而急剧增长。当顶点数达到512时,其可能得状态数就达到达到了10^790,远超围棋的10^460,当然更是比全宇宙的粒子数10^80多得多。
即使中等大小图的状态数也远超围棋,如果顶点数量达到1000万,复杂度会大得惊人,相当于在1后面有4583万个0。
另外着色问题还有另一个复杂维度,围棋算法可以反复在同一张相同棋盘上进行测试,而图即使顶点相同,因为连接各点的边不相同,结构也不完全相同。
从围棋中获得启发
这些更复杂的问题对算法的训练和推理提出了极大的挑战。而AlphaGo曾在解决这类复杂问题上取得了很大的成功,研究人员也很自然的想到了用它来解决图的着色问题。
对于这类问题,我们一般采用启发式搜索算法(heuristic search),就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到达到目标。
AlphaGo使用的蒙特卡洛树搜索(MCTS)用的就是一种启发式搜索算法。
△蒙特卡洛树搜索算法示意图:选择路径;扩展树;由神经网络执行模拟;将最终结果反向传播,更新路径节点。
AlphaGo下棋通过正是这种方法,计算当前棋盘上获胜概率最大的点,直到赢棋为止。
图着色问题与围棋也有类似之处,它的每一步棋就是给接下来的点填上颜色。它和围棋和象棋一样都可以用强化学习来解决问题,差别则是奖励。
在图着色问题中,最明显的奖励选择是颜色种类,使用的种类越少越好。而在围棋和象棋中,奖励是游戏的胜负结果。
在棋类游戏中,让算法在自我对弈中进化是很一件很自然的事,让表现最好的学习算法与自己对抗,这就是AlphaGo的升级版本AlphaGo Zero。
AlphaGo Zero没有学习人类棋谱,它只是懂得围棋规则,在不断的对弈中获得提高,谷歌只用了21天,就让这个0基础的升级版打败了5-0战胜柯洁的AlphaGo Master版。
当AlphaGo进化到自学版本AlphaGo Zero后,它就更适合做图着色问题了,因为着色问题是没有所谓“人类棋谱”可以学习的。
在图着色问题种,研究人员让AlphaGo Zero与其他算法比赛,看谁用的颜色种类少,这就是算法的奖励机制。
原理
和AlphaGo一样,图着色算法也有策略网络(p-network)和价值网络(v-network),p是顶点涂某种颜色的概率,v是最终颜色数量少于之前最佳算法结果的概率。
而在围棋游戏中,p代表落子位置的概率,v代表最终获胜的概率。
为此,研究人员设计了一个快速着色网络(FastColorNet)。
对于这个网络,有如下要求:
1、可扩展性(Scalability):线性O(V)或线性对数O(E+VlogV)时间复杂度,保证它在更大的图形(比如1000万顶点)上也能使用。
2、完整图形上下文(Full Graph Context):不同的图有不同的着色策略,因此网络需要有图形结构的信息。
我们将该网络的损失定义为:
π代表当前行走步数,z代表当前使用的颜色数。
上图就是FastColorNet的架构。它的输入包含两个部分:问题上下文(problem context)和可能颜色上下文(possible color context)。
问题上下文(problem context)是根据刚刚着色的顶点,来安排接下来对哪些顶点进行着色。它在任务开始和结束的时候都是零。问题上下文中包含的顶点数是一个超参数,在实验中设置为8。
可能颜色上下文(possible color context)是以上顶点集合每种可能用到的颜色。它也是一个超参数,在实验中设置为4。
以上两个上下文都输入当策略网络和价值网络中。
策略网络使用全局图形上下文(global graph context),它负责计算将每个颜色选择分配给当前顶点的概率。
随着填充过程的进行,颜色数量会逐渐增加。为了支持颜色数量的变化,它会首先独立处理每种颜色,产生一个非标准化分数,然后通过seq2seq模型对该分数进行处理,该模型还会考虑与其他颜色的依赖性。最终通过softmax操作得出归一化的填充颜色概率。
策略网络利用了具有相同颜色的节点之间的局部关系,提高了准确性,同时还降低了大图计算的时间复杂度。
价值网络负责从输入数据预测着色问题最终的结果。 问题上下文(problem context)中的顶点与着色顺序存储在对应的序列中。使用seq2seq模型处理此序列,然后将这个序列与图形上下文(graph context)组合起来,并将它们馈送到完全连接的reLU层中,最终结果输入softmax,计算出胜利、失败或平局的概率。
结果
研究人员用FastColorNet的强化学习过程来训练图着色问题,图形大小从32个顶点到1000万个顶点不等。
上图显示了图所需颜色的数量如何随顶点数量的增长而增长。
在32K到16M个顶点的图上进行测试,FastColor在训练集中使用的颜色比以往的启发式搜索算法提高了5%-10%。 尽管在测试集有所逊色,但性能也比先前的算法高出1%-2%。
虽然提升比例看起来不高,但这种算法显示出解决此类问题的潜力。Twitter上一位网友这样评价:这篇文章以线性复杂度O(n)解决了一个NP完全问题。
论文地址:
https://arxiv.org/abs/1902.10162
— 完—
相关文章
-
Libra还能有戏吗
-
2022年品牌降噪耳机推荐排行!性价比超高的降噪耳机排行榜!
-
一周智造汇总丨新版市场准入负面清单缩减,京东方拟再扩柔显生产线
-
腾讯信息流秀实力:“推荐+社交+搜索”三大引擎助力内容“合流”
-
对话任正非:信息安全问题不能靠技术手段解决,要靠法律
-
通用电气能源领军人MaherChebbo:能源数字化前沿与应用|EmTech现场
-
原来竟然有70%的线索被浪费?客易云帮你管!
-
小i机器人「12345城市管理」自流程系统
-
进博会“溢出效应”凸显:向最不发达国家释放发展红利
-
联想手机的诺曼底在哪里?
-
数说|嫦娥四号三周年
-
京张铁路通车,罗永浩回应被解约,人人重返社交市场|其他大新闻
-
直播的没有销量,这些你都做了吗
-
罗永浩:锤子的铠甲与软肋?
-
华纳兄弟联手AT&T、爱立信、英特尔推出5G蝙蝠侠AR/VR线下体验
-
最前线|快手新增电影发现、制作业务,要进军影视行业了?
-
【铅早报】探探在AppStore下架;蔚来ES8自燃调查结果公布;美法官批准SEC马斯克和解协议
-
陕西研发应急监测辅助决策系统为精准应对突发水污染事件提供技术支撑
-
Filecoin网络升级倒计时,存储效率预计提升20倍
-
热点|即将IPO的Uber在多国和解违规调查
-
成人美术在线教育品牌「艺伙」,新中产女性消费升级的出口
-
【钛晨报】罗永浩回应一切:锤子成都还没倒闭,我也没有过气
-
掘金零售赛道,顶级资本出钱,AI独角兽出力
-
最前线|为了自给自足,苹果动用机器人回收iPhone里的金属
-
深度资讯|华尔街大举借钱给中国科技独角兽,加剧估值过高担忧
-
【虎嗅早报】ofo回应“人去楼空”:更换新办公地点;苹果重新开始生产iPhone X
-
河南洛阳坚持创新引领,优化营商环境——激活高质量发展新动能
-
《中国好声音》都结束了,OPPO R17 Pro为何还不开售?
-
三不足成紧箍咒,河姆渡能否取到智慧城市这本真经